The Singularities of the Wave Trace of the Basic Laplacian of a Riemannian Foliation
نویسنده
چکیده
We apply techniques of microlocal analysis to the study of the transverse geometry of Riemannian foliations in order to analyze spectral invariants of the basic Laplacian acting on functions on a Riemannian foliation with a bundle-like metric. In particular, we consider the trace of the basic wave operator when the mean curvature form is basic. We extend the concept of basic functions to distributions and demonstrate the existence of the basic wave kernel. The singularities of the trace of this basic wave kernel occur at the lengths of certain geodesic arcs which are orthogonal to the closures of the leaves of the foliation. In cases when the foliation has regular closure, a complete representation of the trace of the basic wave kernel can be computed for t 6= 0. Otherwise, a partial trace formula over a certain set of lengths of well-behaved geodesic arcs is obtained.
منابع مشابه
Identification of Riemannian foliations on the tangent bundle via SODE structure
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...
متن کاملThe Transverse Geometry of G-manifolds and Riemannian Foliations
Given a compact Riemannian manifold on which a compact Lie group acts by isometries, it is shown that there exists a Riemannian foliation whose leaf closure space is naturally isometric (as a metric space) to the orbit space of the group action. Furthermore, this isometry (and foliation) may be chosen so that a leaf closure is mapped to an orbit with the same volume, even though the dimension o...
متن کاملTraces of Heat Operators on Riemannian Foliations
We consider the basic heat operator on functions on a Riemannian foliation of a compact, Riemannian manifold, and we show that the trace KB(t) of this operator has a particular asymptotic expansion as t → 0. The coefficients of t and of t(log t) in this expansion are obtainable from local transverse geometric invariants functions computable by analyzing the manifold in an arbitrarily small neig...
متن کاملLichnerowicz and Obata Theorems for Foliations
The standard Lichnerowicz comparison theorem states that if the Ricci curvature of a closed, Riemannian n-manifold M satisfies Ric (X,X) ≥ a (n − 1) |X| for every X ∈ TM for some fixed a > 0, then the smallest positive eigenvalue λ of the Laplacian satisfies λ ≥ an. The Obata theorem states that equality occurs if and only if M is isometric to the standard n-sphere of constant sectional curvatu...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008